

There are some exceptions to these principles. Not all genes show a pattern of dominance and recessiveness. For some genes, there are more than two alleles. Many times, traits are controlled by more than one gene. Now we will begin to examine some of these exceptions to Mendel's rules.

Genes and the Environment

Gene expression is always the result of the interaction of: genetic potential with the environment.

A seedling may have the genetic capacity to be green, to flower, and to fruit, but it will never do these things if it is kept in the dark. A tree may never grow tall if the soil is poor and no water is available.

In other words, the presence of the gene is not all that is required for the expression of a trait. . The gene must be present along with the proper environmental conditions.

The phenotype of any organism is the result of interaction between: genes and the environment.

Incomplete Dominance or Nondominance

All traits are not so clear-cut as dominant and recessive traits.

For example: In some flowers, such as snapdragons and four o'clocks, a homozygous red flower crossed with a homozygous white flower yields a heterozygous pink flower.

Some genes

 appear to: blend together.
This is known as:

incomplete dominance or nondominance.
No allele is dominant or recessive - they blend together in the offspring.

Since there is no recessive allele, use only capital letters. For example: A red flower would be RR , and white flower would be WW , and the pink hybrid would be RW .

What type of offspring might be produced by two pink flowering plants?
What are the genotypes of the parents? RW and RW

	R	W
R	RR	RW
W	RW	WW

Genotypes	Phenotypes
1/4 RR	1/4 Red
2/4 RW	2/4 Pink
1/4 WW	1/4 White

In a certain plant, flower color shows nondominance, but the stem length shows dominance. The allele for long stem is dominant over the allele for short stem. Cross a heterozygous long stemmed, red plant with a short stemmed pink plant.

What is the genotype of the first parent? LIRR
 What is the genotype of the second parent? IIRW

LR	LR	IR	IR
IR LIRR	LIRR	IIRR	IIRR
IW LIRW	LIRW	IIRW	IIRW
IR LIRR	LIRR	IIRR	IIRR
IW LIRW	LIRW	IIRW	IIRW

Genotypes	Phenotypes
$4 / 16$ LIRR	$4 / 16$ Long, red
$4 / 16$ LIRW	$4 / 16$ Long, pink
$4 / 16$ IIRR	$4 / 16$ short, red
$4 / 16$ IIRW	$4 / 16$ short, pink

Codominance

I^{A}, I^{B}, and i .

Genotypes

Phenotypes

The possible genotypes for blood types are as follows:
$\left.I^{A}\right|^{\text {A }} \quad$ Type A blood
$\left.\right|^{A} i$
$\left.\left.\right|^{B}\right|^{B}$
${ }^{B}{ }^{B} i$
$\left|\left.\right|^{\mathrm{A}}\right|^{\mathrm{B}}$
ii

Type A blood
Type B blood
Type B blood
Type AB blood (Since these alleles are codominant, both are expressed in the offspring)
Type O blood

What types of offspring might be expected if one parent has type $A B$ blood and the other parent is heterozygous for type A blood?

What is the genotype of the first parent? $\left.\left.\right|^{\boldsymbol{A}}\right|^{B}$
What is the genotype of the second parent? $I^{A_{i}}$

Genotypes	Phenotypes
$1 / 4\|A\| A$	Type A blood 2/4
$1 / 4\|A\| B$	Type AB blood 1/4
1/4 ${ }^{\text {A }}$;	Type B blood 1/4
$1 / 4 \boldsymbol{j}^{\text {B }}$ i	

A man and a woman have four children. Each child has a different blood type. What are the genotypes of the parents and the four children?

The parents would have to be:
$\left.\right|^{A} i$ and $\left.\right|^{B}$.

What are the genotypes of the four children?

The type O child is ii.
The type $A B$ child is $\left.I^{A}\right|^{B}$.
The type A child is $I^{A} i$.
The type B child is $I^{\mathbf{B}} \mathbf{i}$.

The Rh factor is determined by one gene with two alleles.
The allele for Rh positive is dominant over the allele for Rh negative. Let's use " R " to represent the positive allele and " r " to represent the negative allele.

Work this problem: A woman whose blood type is AB negative marries a man with blood type O positive. The man's
 mother had blood that was A negative.
What is the genotype of the woman? $\left.\left.\right|^{\mathbf{A}}\right|^{\mathbf{B}} \mathrm{rr}$

What is the genotype of the man? ii Rr

What is the genotype of the man's mother? $\quad \mathrm{I}^{\mathrm{A}} \mathrm{irr}$

$\begin{gathered} \mathrm{A}_{\mathrm{i} i}^{\mathrm{Rr}} \\ \quad \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{IA}_{\mathrm{i} R \mathrm{Rr}} \\ \quad \checkmark \end{gathered}$	${ }^{\mathrm{B}} \mathrm{Bi} \mathrm{Rr}$ \checkmark	$\mathrm{IBi}_{\mathrm{i}}^{\mathrm{Rr}}$ \checkmark
$\mathrm{IA}^{\text {i }} \mathrm{rr}$	$\mathrm{IA}_{\mathrm{i}} \mathrm{rr}$	$\mathrm{B}^{\text {b }}$ ¢ rr	B $^{8} \mathrm{r}$ r ${ }^{\text {d }}$
$\begin{gathered} \mathrm{IA}_{\mathrm{A} i} \mathrm{Rr} \\ \checkmark \\ \hline \end{gathered}$	$\underset{\checkmark}{A_{i} R r}$	$\begin{gathered} \mathrm{IBi}_{\mathrm{Bi}}^{\mathrm{Rr}} \\ \quad \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{IBi}_{\mathrm{Bi}}^{\mathrm{Rr}} \\ \hline \end{array}$
$\mathrm{IA}_{\mathrm{i}}^{\mathrm{rr}}$	$1^{\text {i }}$ rr	${ }^{18 \mathrm{Bj}} \mathrm{rr}$	${ }^{B_{i} r r}$

Genotypes	Phenotypes
$4 / 16{ }^{\mathrm{A}_{\mathrm{i}} \mathrm{Rr}}$	4/16 Type A Rh positive
4/16 ${ }^{\text {A }}$ i rr	4/16 Type A Rh negative
4/16 $\mathrm{Br}^{\mathrm{Bi}} \mathrm{Rr}$	4/16 Type B Rh positive
4/16 ${ }^{\text {B }}$ irr	4/16 Type B Rh negative

Multiple Alleles

 Many genes have two or more alleles and are said to have multiple allelesThis means that there are two or more alleles for the trait.

C - Full color (often called wild type or agouti)

c - albino

$\mathrm{c}^{\text {ch }}$ - light gray or chinchilla

These alleles are listed in black order of their dominanceextremities or

What would be the possible genotypes of each of these rabbits?
Full color: $\mathrm{CC}, \mathrm{C} c^{c h}, \mathrm{Cc}^{h}, \mathrm{Cc}$
Chinchilla: $\mathrm{c}^{c h} \mathrm{c}^{\text {ch }}, \mathrm{c}^{c h} \mathrm{c}^{h}, \mathrm{c}^{c h} \mathrm{C}$
Full color: $\mathrm{CC}, \mathrm{C} \mathrm{c}^{\mathrm{ch}}, \mathrm{Cc}^{\mathrm{h}}, \mathrm{C}$
Chinchilla: $\mathrm{c}^{\text {ch }} \mathrm{c}^{\mathrm{ch}}, \mathrm{c}^{\text {ch }} \mathrm{C}^{\mathrm{h}}, \mathrm{C}^{\text {ch }} \mathrm{C}$ Himalayan: $c^{h} c^{h}, c^{h} c$ Albino: cc

$c^{\text {h }}$ - albino with

POLYGENIC INHERTANCE

In polygenic inheritance, the determination of a given characteristic is the result of: the interaction of many genes.

Some traits, such as size, height, shape, weight, color, metabolic rate, and behavior are not determined by one pair of alleles. These traits are the cumulative result of the combined effects of many genes. This is known as polygenic inheritance.

A trait affected by a number of genes or polygenes - does not show a clear difference between groups of individuals.
Instead, it shows a:
graduation of small differences

Many normal human traits are thought to be polygenic.

Examples:

hair color eye color

weight

 height skin color

Sex-Linked Genes

There are many genes found on the X chromosome. The Y chromosome appears to contain only a few genes.

Since the X and Y chromosomes determine the sex of an individual, all genes found on these chromosomes are said to be sex-linked

More than 100 sex-linked genetic disorders have now been associated with the X chromosome.

Sex-linked traits include color blindness, hemophilia, and muscular dystrophy. These are caused by recessive alleles.

Since males have only one copy of the X chromosome, they will have the disorder if they inherit just one copy of the allele. Females must inherittwo copies of the allele, one on each of their X chromosomes, in order for the trait to show up. Therefore, sex linked genetic disorders are much more common in males than females.

Genealogy Tables (Pedigree Charts)

A. A pedigree chart shows relationships within a family.
B. Squares represent males and circles represent females.
C. A shaded circle or square indicates that a person has the trait.
D.The following table shows three generations of guinea pigs. In guinea pigs, rough coat (R) is dominant over smooth coat (r). Shaded individual have smooth coat. What is the genotype of each individual on the table below?

The following pedigree table is for colorblindness. This is a sexlinked trait. Shaded individual have colorblindness. Determine the genotype of each of the following family members.

Left Side Activity

1. Explain the difference between Codominance and Incomplete Dominance.
2. What is Polygenic Inheritance?
3. What are Sex-linked Genes?
4. Which sex is more likely to have disorders due to sexlinked genes? Why?
5. Explain how to read a Pedigree chart.
