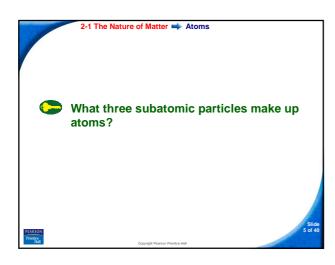
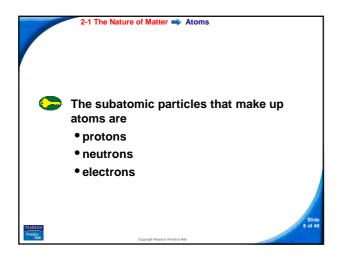


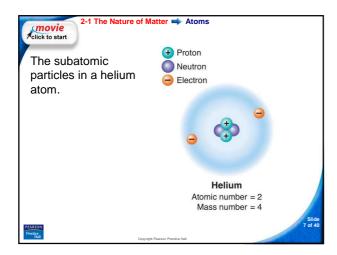
2-1 The Nature of Matter 📫 Atoms

Atoms

The study of chemistry begins with the basic unit of matter, the **atom**.


The Greek philosopher Democritus called the smallest fragment of matter the atom, from the Greek word *atomos.*




2-1 The Nature of Matter 📫 Atoms

Placed side by side, 100 million atoms would make a row only about 1 centimeter long.

Atoms contain subatomic particles that are even smaller.

2-1 The Nature of Matter 🛶 Atoms

Protons and neutrons have about the same mass.

Protons are positively charged particles (+).

Neutrons carry no charge.

Strong forces bind protons and neutrons together to form the **nucleus**, which is at the center of the atom.

2-1 The Nature of Matter 📫 Atoms

The **electron** is a negatively charged particle (–) with 1/1840 the mass of a proton.

Electrons are in constant motion in the space surrounding the nucleus.

2-1 The Nature of Matter 📫 Atoms

Electrons are attracted to the positively charged nucleus but remain outside the nucleus because of the energy of their motion.

2-1 The Nature of Matter 📫 Atoms

Because atoms have equal numbers of electrons and protons, and because these subatomic particles have equal but opposite charges, atoms are neutral.

2-1 The Nature of Matter 📫 Elements and Isotopes

Elements and Isotopes

A chemical **element** is a pure substance that consists entirely of one type of atom.

Elements are represented by a one- or two-letter symbol.

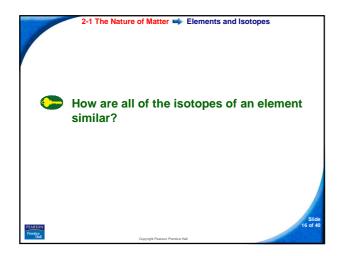
- C stands for carbon.
- Na stands for sodium.

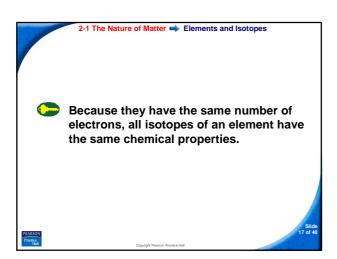
The number of protons in an atom of an element is the element's atomic number.

Carbon has 6 protons, so its atomic number is 6.

More than 100 elements are known, but only about two dozen are commonly found in living organisms.

Isotopes


Atoms of the same element that differ in the number of neutrons they contain are known as **isotopes**.


The sum of the protons and neutrons in the nucleus of an atom is called its mass number.

2-1 The Nature of Matter 📫 Elements and Isotopes

Isotopes are identified by their mass numbers.

For example, carbon has three isotopes—carbon-12, carbon-13, and carbon-14. Each isotope has a different number of neutrons.

2-1 The Nature of Matter 🔿 Elements and Isotopes

Radioactive Isotopes

Some isotopes are radioactive, meaning that their nuclei are unstable and break down at a constant rate over time.

Although the radiation these isotopes give off can be dangerous, they have important scientific and practical uses.

2-1 The Nature of Matter 🔿 Elements and Isotopes

Radioactive isotopes can be used:

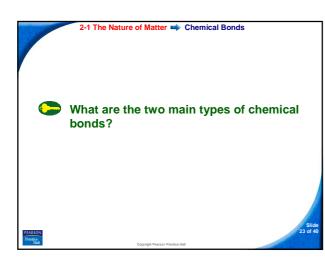
- to determine the ages of rocks and fossils.
- to treat cancer.
- to kill bacteria that cause food to spoil.
- as labels or "tracers" to follow the movement of substances within an organism.

2-1 The Nature of Matter 🜩 Chemical Compounds

Chemical Compounds

In nature, most elements are found combined with other elements in compounds.

A chemical **compound** is a substance formed by the chemical combination of two or more elements in definite proportions.

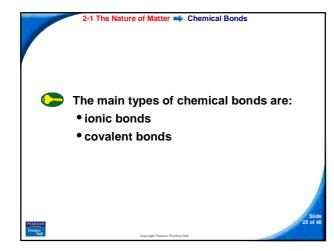

The physical and chemical properties of a compound are different from the elements from which it is formed.

2-1 The Nature of Matter 📫 Chemical Compounds

Scientists show the composition of compounds by a kind of shorthand known as a chemical formula.

Water, H_2O , contains two atoms of hydrogen for each atom of oxygen.

The formula for table salt, NaCl, indicates that sodium and chlorine combine in a 1 : 1 ratio.


2-1 The Nature of Matter 🛶 Chemical Bonds

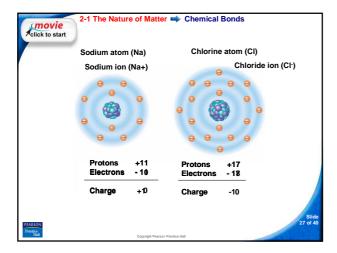
Chemical Bonds

The atoms in compounds are held together by **chemical bonds**.

Bond formation involves the electrons that surround each atomic nucleus.

The electrons that are available to form bonds are called valence electrons.

2-1 The Nature of Matter 🔿 Chemical Bonds

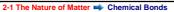

Ionic Bonds

An **ionic bond** is formed when one or more electrons are transferred from one atom to another.

An atom that loses electrons has a positive charge.

An atom that gains electrons has a negative charge.

These positively and negatively charged atoms are known as **ions**.

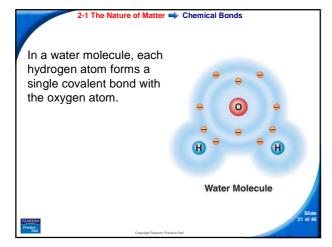


2-1 The Nature of Matter 📫 Chemical Bonds

Covalent Bonds

Sometimes electrons are shared by atoms instead of being transferred.

Sharing electrons means that the moving electrons actually travel in the orbitals of both atoms.


A **covalent bond** forms when electrons are shared between atoms.

- When the atoms share two electrons, the bond is called a single covalent bond.
- When atoms share four electrons it is called a double bond.
- When atoms share six electrons it is called a triple bond.

2-1 The Nature of Matter 📫 Chemical Bonds

The structure that results when atoms are joined together by covalent bonds is called a **molecule**.

A molecule is the smallest unit of most compounds.

2-1 The Nature of Matter 🛶 Chemical Bonds

Van der Waals Forces

When molecules are close together, a slight attraction can develop between the oppositely charged regions of nearby molecules.

Chemists call such intermolecular forces of attraction **van der Waals forces**, after the scientist who discovered them.

2-1 The Nature of Matter 📫 Chemical Bonds

Although van der Waals forces are not as strong as ionic bonds or covalent bonds, they can hold molecules together, especially when the molecules are large. 2-1 The Nature of Matter 🔿 Chemical Bonds

For example, van der Waals forces form between the molecules on the surface of a gecko's foot and the molecules on the surface of the wall.

The combined strength of all the van der Waals forces allows the gecko to grip the wall.

entice

